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Fig. 1. We introduce MIPS-Fusion, an online RGB-D reconstruction based on a novel neural implicit representation – multi-implicit-submap. Neural submaps
are allocated incrementally alongside the scanning trajectory, learned efficiently with local bundle adjustment, refined distributively with back-end optimization,
and optimized globally with loop closure. The divide-and-conquer scheme attains both flexibility and scalability. We also propose a hybrid tracking approach
where randomized optimization is made possible in the neural setting, enabling efficient and robust tracking even under fast camera motions.

We introduce MIPS-Fusion, a robust and scalable online RGB-D reconstruc-
tion method based on a novel neural implicit representation – multi-implicit-
submap. Different from existing neural RGB-D reconstruction methods lack-
ing either flexibility with a single neural map or scalability due to extra
storage of feature grids, we propose a pure neural representation tackling
both difficulties with a divide-and-conquer design. In our method, neural
submaps are incrementally allocated alongside the scanning trajectory and
efficiently learned with local neural bundle adjustments. The submaps can
be refined individually in a back-end optimization and optimized jointly to
realize submap-level loop closure. Meanwhile, we propose a hybrid tracking
approach combining randomized and gradient-based pose optimizations.
For the first time, randomized optimization is made possible in neural track-
ing with several key designs to the learning process, enabling efficient and
robust tracking even under fast camera motions. The extensive evaluation
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demonstrates that our method attains higher reconstruction quality than
the state of the arts for large-scale scenes and under fast camera motions.
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1 INTRODUCTION

The recent decade has witnessed a proliferation of online dense
reconstruction based on RGB-D cameras since the seminal work
of KinectFusion [Izadi et al. 2011; Newcombe et al. 2011a]. Its core
technique is simultaneous camera localization (tracking) and depth
fusion (mapping). Camera tracking has been a long-standing prob-
lem in 3D vision and robotics and has gained extensive research. Re-
cently, the tracking robustness under fast camera motions has been
drastically improved based on randomized optimization [Zhang et al.
2022, 2021]. Contrary to the rapidly advanced frontiers of tracking,
mapping received relatively less attention and the mainstream ap-
proach has been largely confined to volumetric [Curless and Levoy
1996] and point-based fusion [Keller et al. 2013; Whelan et al. 2015]
until recently when neural implicit mapping came along.

ACM Trans. Graph., Vol. 40, No. 4, Article 56. Publication date: August 2023.

https://doi.org/10.1145/3450626.3459676
https://doi.org/10.1145/3450626.3459676


56:2 • Yijie Tang∗ , Jiazhao Zhang∗ , Zhinan Yu, He Wang, and Kai Xu†

On reconstruction of active submapInput sequence

TSDF Radiance

Submap registration

Loop closure

Tracking Mapping

Back-end optimization over all submaps

RGB

Depth

Fig. 2. Method overview. Our method is comprised of online reconstruction of active submap based on neural tracking and mapping and back-end optimization
over all inactive submaps based on intra-submap refinement and and inter-submap registration. The latter facilitates submap-level loop closure.

The learning of implicit representation of 3D objects and scenes
is drawing increasing attention lately, with many powerful meth-
ods proposed and a recent climax reached by neural radiance fields
(NeRF) [Mildenhall et al. 2021]. Traditional dense reconstruction
approaches adopting explicit volumetric representation suffer from
the scalability issue. The storage cost makes it difficult to map a
large scene such as a floor of a building of a moderate size. Neu-
ral implicit representation seems a promising solution to scalable
mapping since it encodes the scene with a compact, end-to-end
learnable neural network. In several neural SLAM and RGB-D re-
constructionworks [Sucar et al. 2021], camera tracking can be jointly
optimized with the neural map representation. Despite the encourag-
ing progress that has been made, however, neither the scalability of
neural mapping nor the robustness of neural tracking is satisfactory
to date.

Neural networks have the issue of limited learning capacity. Some
recent works devise dense feature grids to mitigate the issue at the
cost of cubic spatial complexity which is again hard to scale. NICE-
SLAM [Zhu et al. 2022] adopts hierarchical feature grids to improve
scalability to some extent. We advocate the use of purely neural maps
and aim to fully exploit the potential of implicit representations. To
mitigate the limited capacity issue without scarifying scalability, we
propose incremental allocation and on-the-fly learning of multiple
neural fields alongside the scanning trajectory (see Figure 1). Each
neural field, coined neural submap, governs a local subvolume and
encodes the scene geometry and colors defined in its local coordinate
frame. The neural submaps are allocated incrementally and learned
efficiently with a local bundle adjustment (BA). To achieve a smooth
map transition, we ensure that adjacent neural submaps are spa-
tially overlapping and updated with their shared keyframes jointly.
This on-demand multi-implicit-submap scheme allows a scalable
reconstruction with rich local geometric details.
To achieve high tracking robustness, especially under fast cam-

era motions, we propose a hybrid tracking scheme combining both

gradient-based (GO) and randomized optimizations (RO). Realiz-
ing RO in the implicit setting is conceptually straightforward but
computationally prohibitive since it needs to evaluate fitness for
a sufficiently large number of hypothetic camera poses and each
evaluation involves many times of network inference. To accelerate
this process, we devise two key designs. First, we propose a depth-
to-TSDF loss for which network inference is done only for points
unprojected from the depth map and transformed by a hypothetic
pose; no expensive volumetric depth rendering is needed as in the
previous works [Sucar et al. 2021; Zhu et al. 2022]. Meanwhile, this
loss is differentiable and admits GO. This allows for a scheduled
optimization scheme: RO is used in early iteration steps to obtain a
good initialization, which is followed by GO-based refinements. We
can optionally optimize a photometric loss based on RGB rendering
and GO when the RGB observations are reliable (e.g., texture-rich
and blur-free). Second, to further speed up the fitness evaluation, we
opt for a light-weight network for classification-based TSDF prediction
trained to output a probabilistic distribution over a discrete set of
distances. This makes our neural submaps easier to learn. More
importantly, the epistemic uncertainty of TSDF classification can
be used to build a weighted fitness for improved tracking accuracy.
The on-the-fly allocation of multiple neural submaps facilitates

distributed map refinement. The submap corresponding to the cur-
rent keyframe, referred to as active submap, is usually insufficiently
trained for the sake of maintaining realtime framerate. To this end,
in parallel to the online updating of the active submap, we fine-tune
the inactive submaps in a separate thread using denser sampling of
keyframes and depth pixels. Furthermore, our method also supports
loop closure of neural submaps. Once a non-trivial loop is detected,
we perform a submap-level BA to jointly optimize the poses of all
submaps in the loop. Since our neural submaps are defined in their
local coordinate frames, map adjustment can be realized efficiently
by transforming the submaps which is much faster than neural
updating of learned submaps. See Figure 2 for an overview.
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The design philosophy of our approach is a divide-and-conquer
mapping scheme for flexibility and scalability, together with a hy-
brid tracking scheme for efficiency and robustness, both enabled
by lightweight neural representations assisted with an easier task
of classification. We have evaluated our method on several public
benchmarks and a newly introduced dataset of large-scale scenes.
On all benchmarks, ourmethod outperforms the state-of-the-art neu-
ral SLAM/reconstruction methods. It also successfully reconstructs
the challenging sequences with fast camera motions on which all
previous neural methods failed. In summary, the contributions of
our work include:

• Wepropose a purely neuralmapping approachwhich achieves
scalable dense RGB-D reconstruction through incrementally
allocating and on-the-fly learning multiple neural submaps.

• We propose a robust neural tracking method which works
well for fast camera motions via combining gradient-based
and randomized optimizations in the neural representation.

• Our multi-implicit-submap approach supports parallel fine-
tuning of submaps and, for the first time, realizes loop closure
in neural mapping with submap-level BA.

2 RELATED WORK

We will focus on works on dense SLAM and online RGB-D reconstruc-
tion and review them in terms of mapping and tracking separately
covering both traditional and neural approaches, followed by a
discussion on loop closure in the same context.

Mapping. Since the seminal work of DTAM [Newcombe et al.
2011b], dense SLAM has been extensively studied over the years
(see the survey by [Taketomi et al. 2017]). Taking advantage of
RGB-D cameras, KinectFusion [Izadi et al. 2011; Newcombe et al.
2011a] achieves the first online RGB-D reconstruction via realizing
real-time volumetric depth fusion [Curless and Levoy 1996]. In
order to handle larger environments, spatial hierarchies [Chen et al.
2013] and hashing schemes [Kahler et al. 2015; Nießner et al. 2013]
have been proposed. Some recent works propose to learn depth
map fusion to account for fusion errors [Cao et al. 2018; Weder et al.
2020], handle outliers [Weder et al. 2021], or preserve details [Li et al.
2022a; Lionar et al. 2021]. Another line of works adopt point-, surfel-
[Henry et al. 2014; Keller et al. 2013; Liu et al. 2016; Pradeep et al.
2013;Wang et al. 2019;Whelan et al. 2012, 2016] which leads to better
mapping scalability but produces lower map density. Recently, Xu
et al. [2022] propose a unique mapping scheme based on on-the-fly
implicits of Hermite Radial Basis Functions (HRBFs) demonstrating
good accuracy and robustness of RGB-D reconstruction.

Another approach to scalable mapping is to represent the global
map as a combination of submaps, which dates back at least to
the Atlas framework [Bosse et al. 2003]. The existing works that
utilize explicit TSDF subvolumes to maintain map consistency can
be largely classified into two categories, i.e., those which attempt to
partition space and minimize overlap between subvolumes [Henry
et al. 2013; Kähler et al. 2016] and those which do not partition
space [Fioraio et al. 2015; Millane et al. 2018].

Neural implicit representation offers new opportunities for scal-
able mapping, taking advantage of the expressiveness and com-
pactness of learned geometric priors. CodeSLAM [Bloesch et al.
2018] trains an encoder-decoder network to embed depth maps as
low-dimensional codes which can be used to optimize key-frame
poses. DI-Fusion [Huang et al. 2021] proposes to learn geometric
priors to embed 3D points in a low-dimensional latent space which
can then be decoded into SDF values. Such learned geometric prior
is, however, inaccurate in handling complex geometric details. Re-
cently, iMAP trains an implicit network [Sucar et al. 2021] online
to represent a scene. Several careful designs are made to attain a
good trade-off between compactness and accuracy of mapping. In-
spired by that, iSDF [Ortiz et al. 2022] learns to map with a neural
SDF with novel self-supervision and sampling strategies. Azinović
et al. [2022] propose to represent scene surface using an implicit
TSDF and incorporate this representation in the NeRF framework
for rendering-based learning. Block-NeRF [Tancik et al. 2022] scales
NeRF to render city-scale scenes spanning multiple blocks but not
support online reconstruction.
Observing that the prior works such as iMAP use a single MLP

to represent the entire scene, which can only be updated globally
and hence suffers from the forgetting issue when scanning a large
scene, the following works NICE-SLAM [Zhu et al. 2022] and Vox-
Fusion [Yang et al. 2022] propose a hybrid representation which
combines multi-level grid-based features and a neural decoder, in-
spired by several recent works [Li et al. 2022b; Liu et al. 2020; Peng
et al. 2020; Sun et al. 2022]. The learnable grid-based features can
be seen as a “spatially distributed network” with immense repre-
sentation capacity. The decoder can be either pretrained a priori or
learned on-the-fly. Rosinol et al. [2022] propose a geometric and
photometric 3D mapping pipeline from monocular images based
on hierarchical volumetric neural radiance fields. Recently, Wang
et al. [2023] adopt parametric encoding to accelerate learning con-
vergence based on the multiresolution hash encoding [Müller et al.
2022] on NeRF. More recently, Johari et al. [2023] propose a new
scene representation consisting of multi-scale axis-aligned perpen-
dicular feature planes (tri-plane features).
Our method differs from the existing works in that it utilizes

multiple MLPs to jointly represent the scene. The neural submaps
can be learned and refined independently, achieving a balance of
expressiveness, compactness, and flexibility.

Tracking. Regarding camera tracking, KinectFusion and DTAM
estimate poses for the input depth maps using frame-to-model align-
ment based on point-to-plane ICP. To improve robustness, many
works further adopt photometric and/or feature-based tracking [Dai
et al. 2017b; Whelan et al. 2015]. Bylow et al. [2013] realize a feature-
free tracking through optimizing an objective defined with depth-
to-TSDF conformation. While most state-of-the-art tracking ap-
proaches rely on gradient-based optimization, Zhang et al. [2021]
argue that gradient-based methods are brittle when handling fast
camera motions due to the high nonlinearity of large pose optimiza-
tion. They propose ROSEFusion which minimizes a depth-to-TSDF
objective similar to [Bylow et al. 2013] using randomized optimiza-
tion and achieves highly robust camera tracking under fast motions.
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Fig. 3. The multi-implicit-submap representation for online RGB-D recon-
struction. Three submaps𝑀𝑠−1,𝑀𝑠 and𝑀𝑠+1 with their subvolumes and
keyframes are shown. For each submap, the first keyframe is the anchor
at which the local coordinate frame of the submap is defined. Adjacent
submaps share at least one keyframe, e.g., 𝐹 7

𝑠−1 of𝑀𝑠−1 is 𝐹 0
𝑠 of𝑀𝑠 .

Later, the method is extended to realize depth-inertial odometry
with even higher tracking robustness [Zhang et al. 2022].

Some methods include back-end optimizations such as bundle
adjustment [Dai et al. 2017b; Schops et al. 2019] and pose-graph opti-
mization [Kähler et al. 2016; Kerl et al. 2013] to improve tracking ac-
curacy. These back-end optimizations are typically time-consuming
and therefore conducted only for keyframes and invoked sparsely in
time. Back-end optimization is also used for loop closure; see below.

In the context of neural SLAM and neural online reconstruction,
camera tracking is solved either in a coupled way based on inverse
neural representation learning via differentiable volumetric render-
ing, or in a decoupled manner where camera poses are optimized
independently without relying on the neural representation. Cou-
pled approaches, such as iMAP, NICE-SLAM, and Vox-Fusion, adopt
a render-and-compare paradigm where both RGB and depth maps
are rendered and compared to the corresponding observations. Since
volumetric rendering is expensive, it is done only for subsampled
keyframes and pixels. Generally speaking, while coupled solutions
seem neat and more integrated, decoupled ones usually lead to more
robust tracking results. Note, however, that decoupled approaches
can employ not only traditional tracking methods (e.g., [Chung
et al. 2022; Koestler et al. 2022]), but also neural tracking models.
For example, iDF-SLAM [Ming et al. 2022] learns a neural feature
detector and DROID-SLAM [Teed and Deng 2021] learns a neural
optical flow estimator for frame-to-frame registration.
Our tracking method belongs to coupled approach since it runs

completely on the neural representation. To attain high robustness,
we, for the first time, integrate gradient-based and randomized opti-
mizations in the neural setting, although not fully differentiable due
to the randomized part. We use the same objective function for both
optimization processes, facilitating a natural switching between the
two for a scheduled optimization. This objective function also saves
depth rendering. Combining an efficient GPU implementation, we
realize the first neural tracker working under fast camera motions.

Loop closure. Loop closure is a classic technique in the back-end of
SLAM systems. Deep learning has been mainly used in loop closure
detection (e.g., [Merrill and Huang 2018]). Once detected, traditional
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Fig. 4. System pipeline. Our method runs two processes in parallel. The
active process works on active submap and performs tracking of the cur-
rent RGB-D frame, selection of keyframes, and mapping based on both
the current frame and a subset of the keyframes. The subvolume of the
active submap expands as new keyframes comes in. When a new active
submap is created, the previous active submap becomes inactive. Back-end
optimization is performed and loop closure conducted whenever available.

methods are used for global adjustment of the camera trajectory
and the map. Regarding bundle adjustment, BA-Net [Tang and Tan
2018] proposes a learnable bundle adjustment layer which optimizes
over a number of coefficients used to linearly combine a depth
basis as well as the damping factor of the Levenberg-Marquardt
algorithm. DROID-SLAM proposes a differentiable dense bundle
adjustment layer which computes a Gauss-Newton update to camera
poses and dense per-pixel depth to match the estimated optical flow.
However, they were not shown to work for loop closure. In fact,
adjusting maps, especially neural maps, is much harder than camera
trajectories. Yuan and Nüchter [2022] propose an algorithm for the
𝑆𝐸 (3)-transformation of neural implicit maps for remapping in loop
closure. We did not follow this method since our submaps can be
updated locally and transformed globally. In fact, multi-submap
adjustment admits more DoFs than 𝑆𝐸 (3) transformations.

3 METHOD

The input to online reconstruction is an RGB-D sequence {𝐶𝑡 , 𝐷𝑡 }𝑡=0:𝑇
(𝐶 and 𝐷 are color and depth images, respectively) captured by an
RGB-D camera and the output is a surface reconstruction of the
scene being captured as well as a trajectory of 6DoF camera poses,
{[R𝑡 |t𝑡 ]}𝑡=0:𝑇 ([R|t] ∈ 𝑆𝐸 (3) represents a 6D camera pose in the
world coordinate frame). Our method is built upon the neural map-
ping framework of iMAP [Sucar et al. 2021]. The key problem of
online neural RGB-D reconstruction is the joint optimization of the
neural map and the 6D camera pose of each frame.

Figure 2 gives an overview of our method. In this section, we first
introduce our multi-implicit-submap representation (Section 3.1).
Based on the representation, we describe the optimization losses
used for mapping and tracking (Section 3.2). We then elaborate on
the optimization processes for camera poses (Section 3.3) and neural
maps (Section 3.4). Finally, we discuss the back-end optimization
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Fig. 5. The network architecture of SDF and color prediction.

together with loop closure (Section 3.5). Figure 4 shows our system
pipeline which will be elaborated below.

3.1 Multi-Implicit-Submap Representation

Our scene representation is a sequence of 𝑆 neural submaps {𝑀𝑠 }𝑠=1:𝑆
allocated alongside the scanning trajectory. Each submap is a tuple
𝑀𝑠 = ⟨𝑓 \𝑠 , 𝑐_𝑠 , T𝑠 , F𝑠 ,Ω𝑠 ⟩, where 𝑓 \𝑠 is the truncated signed distance
function (TSDF) and 𝑐_𝑠 the radiance field, both implemented as a
multi-layer perceptron (MLP) and parameterized by \ and _, respec-
tively. More advanced scene representation techniques [Müller et al.
2022; Wang et al. 2023] could be used for enhanced reconstruction
quality. While 𝑐_𝑠 is trained as usual, 𝑓 \𝑠 is learned as a classifier
to facilitate fast mapping and tracking. Both the two functions are
defined in the local coordinate frame of the submap 𝑀𝑠 with T𝑠
being the global pose of the submap in the world coordinate frame.
F𝑠 is the set of keyframes associated to𝑀𝑠 . The global pose of the
first keyframe 𝐹 0𝑠 ∈ F𝑠 is set to the submap pose T𝑠 . Therefore, 𝐹 0𝑠 is
also referred to as the anchor keyframe of𝑀𝑠 . Ω𝑠 is the axis-aligned
cuboid subvolume that𝑀𝑠 governs. See Figure 3 for illustration.
Learning local neural map functions gains flexibility such that

each submap can be transformed as a whole for efficient global
alignment of submaps in loop closure. Meanwhile, local functions
are generally easier to learn due to the low data bias caused by
localized data distributions in local coordinate frames.

Classification-based neural TSDF. Given a 3D point defined in the
world coordinate frame and located in the subvolume of 𝑀𝑠 , i.e.,
xW ∈ Ω𝑠 , its TSDF value by𝑀𝑠 can be computed as𝜓𝑠 (x𝑠 ) = 𝑓 \𝑠 (x𝑠 ),
where x𝑠 = T−1𝑠 xW is the point transformed into the local coordinate
frame of𝑀𝑠 ; see Figure 5. We use a sinusoidal positional encoding
to encode the 3D position before feeding it into the neural net-
work [Mildenhall et al. 2021]. For a point located in the overlapping
area of two subvolumes, e.g., x𝑊 ∈ Ω𝑠 ∩ Ω𝑡 , its global TSDF value
can be evaluated as a weighted combination of the local TSDF values
given by the corresponding two submaps:

𝜓 (xW) = 𝑤𝑠 (x𝑠 )𝜓𝑠 (x𝑠 ) +𝑤𝑡 (x𝑡 )𝜓𝑡 (x𝑡 )
𝑤𝑠 (x𝑠 ) +𝑤𝑡 (x𝑡 )

, (1)

where x∗ = T−1∗ xW and the weight is 𝑤∗ = 1
ℎ∗ (x∗ )2 with ℎ∗ being

the uncertainty of TSDF prediction by the submap (see below).
In particular, we choose 5 signed distance values uniformly from

the interval [−𝜏, 𝜏], i.e., {ℓ1 = −𝜏, ℓ2 = −𝜏2 , ℓ3 = 0, ℓ4 = 𝜏
2 , ℓ1 = 𝜏},

where 𝜏 = 0.1m is the truncation distance. Given a point x𝑠 , 𝑓 \𝑠
outputs a normalized 5D vector z = (𝑧𝑖 )𝑖=1,...,5 corresponding to the

TS
D

F 
er
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r

Iteration steps Iteration steps

(a) Regression. (b) Classification.

Fig. 6. Convergence rate (learning speed) comparison between regression-
and classification-based TSDF prediction.

five distance values with 𝑧𝑖 indicating how probable x𝑠 ’s SDF value
is close to ℓ𝑖 . We can then approximate x𝑠 ’s SDF value with a soft
argmax:

𝜓𝑠 (x𝑠 ) =
5∑︁

𝑖=0

𝑒𝛽𝑧𝑖∑5
𝑖=1 𝑒

𝛽𝑧𝑖
ℓ𝑖 , (2)

where we use a coldness parameter 𝛽 = 10. With soft argmax,
our method obtains gradients from the training losses, facilitating
effective learning of submaps. Moreover, the coldness parameter
controls the smoothness of the probabilities over multiple classes,
leading to a better approximation of SDF distributions. Figure 6
shows that our classification-based TSDF prediction converges faster
and hence learns faster than regression-based one.

Defining the probability distribution over the five classes as 𝑝𝑖 =
𝑒𝛽𝑧𝑖∑5
𝑖=1 𝑒

𝛽𝑧𝑖
, 𝑖 = 1, . . . , 5, we can measure the uncertainty of the TSDF

classification as the Shannon entropy:ℎ𝑠 (x𝑠 ) = −
∑5
𝑖=1 𝑝𝑖 log𝑝𝑖 . The

plots in Figure 7 demonstrate that the uncertainty measurement is
useful in filtering points with inaccurate TSDF predictions, and is
insensitive to class count.

Neural radiance field. In addition to the neural geometry rep-
resentation, we also learn for each submap a neural appearance
representation [Mildenhall et al. 2021], 𝑐_𝑠 , for optimizing mapping
and tracking with photometric losses. Similar to [Sucar et al. 2021],
we omit the encoding of view directions since we are not interested
in modeling view-dependent effects such as specularities. Imple-
mented also with MLPs, it takes as input a 3D position (after sinu-
soidal encoding) x𝑠 and regresses a radiance value 𝑐_𝑠 (x𝑠 ) as output.
This simplification also makes 𝑐_𝑠 light-weight and faster to learn.

Color and depth map rendering. We render a color image as a
weighted sum of radiance values of points q = o +𝑑𝑝 (q)v𝑝 sampled
along the ray v𝑝 shooting from the camera center o to an image
pixel 𝑝 , with 𝑑𝑝 (q) being q’s depth. The weights are computed
directly from signed distance values as the product of two sigmoid
functions [Azinović et al. 2022]:

𝜔𝑝 (q) = 𝜎

(
𝜓 (q)
𝜏

)
𝜎

(
−𝜓 (q)

𝜏

)
. (3)
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Fig. 7. Scattered plots of uncertainty (Shannon entropy) of samples with
different TSDF errors. The two plots are for TSDF classification against 5
and 11 classes, respectively. The colors of the dots indicate the TSDF values
(red is large (free space), blue is small (−𝜏 ) and green corresponds largely
to the zero-level set). Points with larger TSDF errors generally have higher
uncertainties and vice versa, making the uncertainty measurement useful
in filtering points with inaccurate TSDF predictions. Note also that the
majority of dots reside in the lower right instead of the upper left meaning
that the entropy-basedmeasure prefers false positive (FP) over false negative
(FN). FN tends to trust predictions with higher TSDF error, which is more
harmful to reconstruction accuracy.

The color along of pixel 𝑝 is approximated as a weighted sum of
radiance sampled on ray v𝑝 within only the truncation region:

𝐶 (𝑝) = 1∑
q∈Str𝑝 𝜔𝑝 (q)

∑︁
q∈Str𝑝

𝜔𝑝 (q)𝑐_𝑠 (q, v𝑝 ), (4)

whereStr𝑝 is the set of sampled points in truncation region. Sampling
only within truncation region leads to a much faster rendering with
limited quality degrading since the weights drop quickly to zero
outside the truncation according to Eq. (3). The simplifications on
rendering is fine to our task. Depth can be rendered similarity:

�̃� (𝑝) = 1∑
q∈Str𝑝 𝜔𝑝 (q)

∑︁
q∈Str𝑝

𝜔𝑝 (q)𝑑 (q) . (5)

Note that, however, the depth rendering is used only for visualizing
the learned geometry; neither our mapping or tracking involves
depth rendering loss due to its high computational cost.

3.2 Optimization Losses for Mapping and Tracking

To realize mapping and tracking, we optimize the neural scene rep-
resentations together with the keyframe poses through minimizing
different combinations of four different losses. The four losses in-
clude (1) a depth-to-TSDF loss Ld2t for imposing the confirmation
between the posed depth map and the learned TSDF, (2) a TSDF
truncation-region loss Ltr for learning the SDF values within the
truncation region, (3) a TSDF free-space loss Lfs for learning the
truncation of TSDF on the visible side of the surface within the
viewing frustum, and (4) an RGB rendering loss Lrgb for enforcing
photometric consistency.
While Ld2t is used for tracking (RO and GO), Ltr, Lfs and Lrgb

are used for both mapping and GO-based pose optimization. While
the latter three losses are commonly seen in recent works, the
depth-to-TSDF loss is new to neural SLAM and we show through

evaluations that it is highly effective and efficient for tracking op-
timization. We do not use the depth rendering loss of [Yang et al.
2022] since it has been encompassed by Ltr and Lfs.

Depth-to-TSDF loss. Given the depth image of the current frame
𝐷𝑡 and the current neural submap 𝑓 \𝑠 , our task is to compute the 6-
DoF camera pose of the current frame in the world coordinate frame
[R𝑡 |t𝑡 ] ∈ 𝑆𝐸 (3) while optimizing the 𝑓 \𝑠 with the 3D information
of the posed depth map. To this end, we define a frame-to-model
error metric to measure the fitness of how well 𝐷𝑡 “fits into” the
TSDF under pose [R𝑡 |t𝑡 ] [Bylow et al. 2013; Zhang et al. 2021]. For
each pixel 𝑝 of 𝐷𝑡 , we can compute based on its depth 𝐷𝑡 (𝑝) the
corresponding 3D point x𝑝 in the camera coordinate frame of the
current frame. We can then transform this point into the world
coordinate frame:

xW𝑝 = R𝑡x𝑝 + t𝑡 . (6)

We use the unprojected 3D points to query the TSDF map defined in
the world coordinate system and obtain point-to-surface distances
directly. If the camera pose is correct, it is expected that the point-
to-surface distances of all unprojected 3D points should be zero.
Assuming that the depth measurements contain Gaussian noise
and that all pixels are independent and identically distributed, the
likelihood of observing depth image 𝐷𝑡 from camera pose [R𝑡 |t𝑡 ] is

𝑝 (𝐷𝑡 |R𝑡 , t𝑡 ) ∝
∏
𝑝∈P

exp
(
−𝜓𝑠 (T−1𝑠 (R𝑡x𝑝 + t𝑡 ))2

)
, (7)

where P is the set of sampled pixels. Our depth-to-TSDF loss is
defined as the negative log-likelihood:

Ld2t (R𝑡 , t𝑡 ) = − log𝑝 (𝐷𝑡 |R𝑡 , t𝑡 ) =
∑︁
𝑝∈P

𝜓𝑠 (T−1𝑠 (R𝑡x𝑝 + t𝑡 ))2 . (8)

The loss is used only for pose optimization of the current frame.

TSDF truncation-region loss. The truncation-region loss is devised
to supervise the MLP to output correct SDF values for points within
the truncation region:

Ltr (Θ) =
1
|P |

∑︁
𝑝∈P

1
|Str𝑝 |

∑︁
q∈Str𝑝

(
𝜓𝑠 (T−1𝑠 q) − (𝐷𝑡 (𝑝) − 𝑑𝑝 (q))

)2
,

(9)
where Str𝑝 is the set of points sampled on ray v𝑝 and within the
truncation region. 𝐷𝑡 (𝑝) − 𝑑𝑝 (q) is the signed distance value of
sample point q with 𝑑𝑝 (q) being the sampled depth along ray v𝑝
of pixel 𝑝 . Θ may encompass the parameters of the TSDF \ and the
camera pose, depending on whether the task is mapping or tracking.
The predicted signed distance𝜓𝑠 (T−1𝑠 q) is computed based on the
output of 𝑓 \𝑠 according to Eq. (2). This loss is used for optimizing
the neural map parameters \ . To ensure a meaningful uncertainty
measurement of 𝑓 \𝑠 ’s output (𝑧𝑖 )𝑖=1,...,5, we additionally minimize
the following EMD-based distribution loss:

Ltr-emd (Θ) =
1
|P |

∑︁
𝑝∈P

1
|Str𝑝 |

∑︁
q∈Str𝑝

5∑︁
𝑖=1

𝑧𝑖 |𝑖 − 𝑦 (q) |, (10)

where 𝑦 (q) is the ground-truth label of TSDF classification at q.
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Fig. 8. Moving and rescaling PST from iteration step 𝑘 − 1 to 𝑘 . At each
step, we first identify the Advantage Particle Set (APS, shaded in red) which
is a subset of the current PST Ω (blue ellipse), and then compute the current
best solution 𝜋∗

𝑘
(red dot) as the weighted average of the particles in APS.

The PST is then moved to 𝜋∗
𝑘
with the new axis length proportional to the

vector v = 𝜋∗
𝑘
− 𝜋∗

𝑘−1, thus evolving into (green ellipse).

TSDF free-space loss. The free-space loss directs the neural map to
output a value equal to the truncation value 𝜏 for the empty region
in the visible side of the viewing frustum:

Lfs (Θ) =
1
|P |

∑︁
𝑝∈P

1
|Sfs𝑝 |

∑︁
q∈Sfs𝑝

(
𝜓𝑠 (T−1𝑠 q) − 𝜏

)2
, (11)

where Sfs𝑝 is the set of sample points in the free space of the visi-
ble side of ray v𝑝 . For free-space TSDF, a similar distribution loss
Lfs-emd is defined as in Eq. (10).

Remarks on the TSDF losses. The depth-to-TSDF loss is estimated
by direct point query and accounts only for 3D points unprojected
from the depth map. This makes it much more efficient than volu-
metric rendering. Therefore, it is suited for depth-based tracking.
The TSDF truncation-region and free-space losses concern about
the full occupancy (geometry) information in the viewing frustum
of a frame, which is thus well-targeted for the mapping task.

RGB rendering loss. The RGB loss measures the squared differ-
ences between the rendered and the input (ground-truth) color
images:

Lrgb (Λ) =
1
|P |

∑︁
𝑝∈P
∥𝐶 (𝑝) −𝐶𝑡 (𝑝)∥, (12)

where 𝐶𝑡 (𝑝) is the color at pixel 𝑝 of the input RGB image of the
current frame and 𝐶 (𝑝) is defined in Eq. (4). Λ may encompass the
parameters of the radiance field _ and the camera pose, depending
on whether the task is mapping or tracking.

3.3 Tracking with Hybrid Optimization

Given the current RGB-D frame, we compute its camera pose by
minimizing the depth-to-TSDF loss and the RGB rendering loss
while keeping the current active submap fixed. To do so, we employ
a hybrid optimization combining both randomized optimization
(RO) and gradient-based optimization (GO). The optimization is
scheduled as follows. The RO is first performed for the depth-to-
TSDF loss only. After a fixed number of RO iterations, the GO is
invoked for both two losses for another fixed number of iterations.

Randomized pose optimization. The RO adopts the particle filter
optimization (PFO) framework which samples and propagates a
population of particles (candidate solutions) iteratively to make
them cover the optimal solution as quickly as possible. In our case, a
solution is a 6DoF camera pose 𝜋 = (R, t) � (𝑞𝑥 , 𝑞𝑦, 𝑞𝑧 , 𝑥,𝑦, 𝑧) with
𝑞𝑥 , 𝑞𝑦 and 𝑞𝑧 being the imaginary part of the rotation quaternion
and t = (𝑥,𝑦, 𝑧)𝑇 . The key to making PFO realtime capable is to pre-
sample a set of particles uniformly within the unit sphere in the 6D
solution space, referred to as Particle Swarm Template (PST), instead
of sampling the particles on the fly throughout the optimization.
The PST is then moved and rescaled into a 6D ellipsoid over the
optimization iterations to gradually cover the optimal solution. Let
us denote the PST at iteration 𝑘 as Π𝑘 , which is parameterized by a
center position c and a vector of axis lengths (each for one of the
six dimensions) r = (𝑟𝑑 )𝑑=1:6.

In each iteration step 𝑘 , we first evaluate the depth-to-TSDF loss
[ for each particle 𝜋𝑖

𝑘
= (R𝑖

𝑘
, t𝑖
𝑘
) ∈ Π𝑘 based on the uncertainty-

weighted depth-to-TSDF loss:

[ (𝜋𝑖
𝑘
) =

∑︁
𝑝∈P

𝜓𝑠 (T−1𝑠 (R𝑖𝑘x𝑝 + t
𝑖
𝑘
))2

ℎ𝑠 (x𝑝 )2
, (13)

where x𝑝 is the unprojected 3D point corresponding to pixel 𝑝 .
The uncertainty ℎ𝑠 (·) of TSDF prediction 𝜓𝑠 (·) has been given in
Section 3.1. Among all the particles in Π𝑘 , we collect those whose
depth-to-TSDF loss is smaller than 𝜋∗

𝑘−1 (the best solution in step
𝑘 − 1) into an Advantage Particle Set (APS). The best state at the
current step 𝑘 takes the centroid of the APS. The PST is moved to
be centered at the best state of the current step 𝜋∗

𝑘
.

To rescale the PST, we compute the axis lengths r𝑘 of the current
step as follows:

v = 𝜋∗
𝑘
− 𝜋∗

𝑘−1, (14)
r̂𝑘 = [ (𝜋∗

𝑘
) v
∥v∥ + 𝜖, (15)

where v is an anisotropic attractor which drives the particles to-
wards the best solution s∗

𝑘
(the global best of the particle set). r̂𝑘

is the (interim) vector of axis lengths of Π𝑘 , which is scaled by
depth-to-TSDF loss [ (s∗

𝑘
) to gradually decrease the search range for

stable convergence. 𝜖 is a 6D vector of small numbers (10−3) used to
avoid degenerating PST. Figure 8 gives an illustration of randomized
optimization. The final shape of the PST is a blend between the
current step axis lengths r̂𝑘 and previous step axis lengths r𝑘−1:

r𝑘 = 𝛼r𝑘−1 + (1 − 𝛼)r̂𝑘 , (16)

where 𝛼 = 0.1. The scaling factor is computed with r𝑘 and r𝑘−1.

Gradient-based pose optimization. The GO phase minimizes the
following loss over the input pixel batch set B:

L(R𝑡 , t𝑡 ) =
∑︁
𝑏∈B
L𝑏d2t (R𝑡 , t𝑡 ) + 𝜔L

𝑏
rgb (R𝑡 , t𝑡 ), (17)

where L𝑏∗ is the average loss over batch 𝑏 and 𝜔 = 1. We adopt the
ADAM solver [Kingma and Ba 2014] with a learning rate of 10−2.
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Algorithm 1: Mechanism of multi-submap maintenance

Input :RGB-D sequences {𝐼𝑐𝑡 , 𝐼𝑑𝑡 } and corresponding pose x𝑡
Output :Submaps𝑀𝑗 and corresponding keyframes

{ (𝐼𝑐
𝑖
, 𝐼𝑑
𝑖
, x𝑖 ) ∈ Ω (𝑀𝑗 ) }

1 𝑀0 ← CreateSubmap(𝐼𝑐0 , 𝐼
𝑑
0 , x0) ; // see submap allocation

2 Ω (𝑀0 ) ← InsertKeyFrame(𝐼𝑐0 , 𝐼
𝑑
0 , x0,Ω (𝑀0 ));

3 𝑡 ← 1;
4 𝑗 ← 0;
5 repeat
6 if CheckOutBound(x𝑡 , 𝑀0:𝑗) then
7 𝑗 ← 𝑗 + 1;
8 𝑀𝑗 ← CreateSubmap(x𝑡);
9 Ω (𝑀𝑗 ) ← InsertKeyFrame(𝐼𝑐𝑡 , 𝐼

𝑑
𝑡 , x𝑡 ,Ω (𝑀𝑗 ));

10 foreach𝑀𝑗 ∈ {𝑀 } do // see keyframe selection
11 if CheckKeyFrame(x𝑡 , 𝑀𝑗) then
12 Ω (𝑀𝑗 ) ← InsertKeyFrame(𝐼𝑐𝑡 , 𝐼

𝑑
𝑡 , x𝑡 ,Ω (𝑀𝑗 ));

13 𝑡 ← 𝑡 + 1;
14 until All frames are processed;

3.4 Mapping of the Active Submap

Given the sequentially acquired RGB-D frames, the mapping process
optimizes the network parameters of 𝑓 \𝑠 and 𝑐_𝑠 via minimizing the
TSDF truncation-region and free-space losses, along with the RGB
rendering loss. In this subsection, we focus on the mapping of the
active submap and leave the refinement of inactive ones for the next
subsection. Algorithm 1 describes the mechanism of multi-submap
maintenance.

Submap allocation. The subvolume governed by a neural submap
is an axis-aligned bounding box enveloping the viewing frustums
(the far clipping plane is set to 5m) of all keyframes. The subvol-
ume of the active submap grows dynamically as new keyframes
are being added. Whenever a new keyframe is selected, the subvol-
ume is enlarged by a minimum expansion to enclose its viewing
frustums. When any side of the subvolume reaches a predefined
maximum length (set to 7m), the subvolume stops expanding along
that dimension. When the overlap between the viewing frustum
of a keyframe and the subvolume is less than 75% of the frustum
(see CheckOutBound() in Algorithm 1), a new submap is allocated
and set as active and that keyframe is selected as its first/anchor
keyframe. The previous active submap then becomes inactive.

Submap initialization: When a new submap is created, we perform
initialization using its first keyframe shared with the previous active
submap for 500 epochs (found through experiments), to make sure
that the MLP of the new submap is optimized sufficiently for a
smooth transition of tracking across submaps (see CreateSubmap()
in Algorithm 1).

Keyframe selection. The selection of keyframes is via measuring
the information gain of a frame (see CheckKeyFrame() in Algo-
rithm 1). Based on the depth-to-TSDF loss, we compute for each

frame an information gain used for filtering those frames which
does not induce much novel information. Given a frame, we com-
pute the depth-to-TSDF loss for each pixel:𝜓𝑠 (T−1𝑠 (R𝑡x𝑝 + t𝑡 )). If
the proportion of pixels having a small error (< 0.05) is lower than
65%, the frame is selected as a keyframe. These thresholds were
found through experiments and are then kept fixed. To avoid se-
lecting keyframes too frequently, we stipulate that the minimum
spacing between two keyframes is 30 frames (see InserKeyFrame()
in Algorithm 1).

Active submap optimization. The optimization of the active submap
at each frame involves five different frames. First of all, the current
frame, after being tracked, always participates in map optimization.
The first/anchor keyframe of the active submap is also selected with
its pose being fixed during optimization. Fixing the anchor pose
avoids free drifting of the entire submap. Besides the above two
frames, we randomly selected another three keyframes in between.
If there are fewer than three keyframes in between, already selected
frames are duplicated up to five. We found through experiments that
using such five frames for optimization leads to a good balance be-
tween accuracy and efficiency. In summary, each frame participates
in the optimization at least once, and more times if it is a keyframe.
The neural submap and the poses of the five frames (except for
the anchor pose) are jointly optimized, which is essentially a local
bundle adjustment for the active submap. This local BA optimizes
the following loss for 15 iterations with a learning rate of 10−2 for
submap update and 10−3 for pose optimization:

L(\, _,R𝑖1,...,𝑖5 , t𝑖1,...,𝑖5 ) =
∑︁
𝑏∈B

𝜔rgbL𝑏rgb + 𝜔fsL𝑏fs + 𝜔trL𝑏tr, (18)

which sums up losses over the pixel batch set B for all the involved
five frames. The weights are: 𝜔rgb = 1, 𝜔fs = 10, and 𝜔tr = 1000.

3.5 Back-end Optimization and Loop Closure

We create two threads running in parallel, one for the tracking
and mapping of the active submap and one for the refinement of
the inactive ones. This can improve the global map quality while
ensuring realtime frame rate of online reconstruction.

Optimization of inactive submaps. The inactive thread optimizes
the inactive submaps sequentially and repeatedly. For the optimiza-
tion of each inactive submap, we randomly select four keyframes
belonging to the submap. The four keyframes, together with the
first/anchor keyframe, are used to update the neural submap jointly.
The poses of the four keyframes are also optimized with a small
learning rate (10−3). Such intra-submap local BA optimization is
conducted for 10 iterations. The number was determined through
experiments for a trade-off between accuracy and efficiency.

Handling pose jump at submap revisiting. When the camera moves
into the subvolume of an inactive submap built previously, the inac-
tive submap is re-activated. At this time, the overlapping keyframe,
whose pose was just optimized in the last active submap, is now
optimized again with the new active submap against its map built
previously. Since the two maps may be misaligned due to drift, the
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Fig. 9. Finding correspondence for a pair of adjacent submaps. Given a
surface point p𝑗

𝑖
of one submap𝑀𝑗 , its correspondence is found by moving

it along the gradient of the other submap𝑀𝑘 , denoted by ∇𝜓𝑘 (p𝑗𝑖 ) , for a
distance of𝜓𝑘 (p𝑗𝑖 ) . Submap transformations are omitted for brevity.

pose of the keyframe may jump across the two optimizations. To
avoid this jump, we first perform a local BA of the new active submap
using this overlapping keyframe (together with other keyframes of
it) for 10 epochs, before starting tracking. This alignment of adjacent
submaps makes the tracking transit smoothly.

Loop detection and closure. Since we concern about submap-level
loop closure, loop detection is detected simply by checking whether
the camera moves into the subvolume of an inactive submap. We
detect only non-trivial loops involving at least four submaps. A
more sophisticated scheme of loop detection can also be used.
To construct the optimization problem for loop closure, we first

find for each pair of adjacent submaps (with subvolume overlap),
𝑀𝑗 and 𝑀𝑘 , a set of point correspondences denoted as C𝑗𝑘 . To do
so, we first identify the overlapping region between 𝑀𝑗 and 𝑀𝑘 .
In the overlapping region, we extract a set of surface points of𝑀𝑗

at the zero level set of 𝜓 𝑗 , denoted by S𝑗 . For each point p𝑗
𝑖
∈ S𝑗 ,

its correspondence on the surface of q𝑘
𝑖
∈ S𝑘 can be found by

first transforming it into the local coordinate frame of𝑀𝑘 and then
moving it along the gradient of𝜓𝑘 for a distance of its TSDF value,
similar to [Fioraio et al. 2015]:

q𝑘𝑖 = T−1
𝑘

T𝑗p
𝑗
𝑖
−𝜓𝑘 (T−1𝑘

T𝑗p
𝑗
𝑖
)∇𝜓𝑘 (T−1𝑘

T𝑗p
𝑗
𝑖
), (19)

where ∇𝜓 denotes the gradient of TSDF field which is defined only
within the truncation region. Therefore, our method can only find
correspondences lying in the truncation regions. This suffices for
our method since the drift between two consecutive submaps is
usually quite small. Between the loop-closing submaps (the first
and the last), however, the drift can be very large, for which we em-
ploy the existing feature detection and matching techniques [Choi
and Christensen 2012]. Given the correspondence (p𝑗

𝑖
, q𝑘

𝑖
) ∈ C𝑗𝑘 ,

we can formulate the following point-to-plane inter-submap pose
constraint:

𝑒
𝑗𝑘
𝑖

=

(
p𝑗
𝑖
− T−1𝑗 T𝑘q

𝑘
𝑖

)
· n𝑗

𝑖
, (20)

where n𝑗
𝑖
= ∇𝜓 𝑗 (p𝑗𝑖 ) is the normal of p𝑗

𝑖
in submap𝑀𝑗 . In case two

consecutive submaps have too low overlap such that their correspon-
dence set is too small to pin down their relative transformation, we
simply use a pose-to-pose constraint based on the tracked motion
between the two submaps, i.e.,M𝑠−1,𝑠 :

𝑒𝑠−1,𝑠 = log
(
M𝑠−1,𝑠T−1𝑠 T𝑠−1

)
, (21)

where log : 𝑆𝐸 (3) → 𝔰𝔢(3) is the logarithmic map. Putting the two
constraints together, we solve for all submap poses by optimizing:

argmin
{T1,...,T𝑆 }

∑︁
𝑗

∑︁
𝑘

∑︁
𝑖

∥𝑒 𝑗𝑘
𝑖
∥2 +

∑︁
𝑠

∥𝑒𝑠−1,𝑠 ∥ (22)

The optimization is solved by Ceres [Agarwal et al. 2010] with the
Levenberg-Marquardt method.

4 IMPLEMENTATION DETAILS

Parameter settings. For efficiency, all losses are computed with
downsampled 384 pixels for both depth and RGB images following
the sampling method of [Zhang et al. 2021] in which images are
stripe downsampled into 16 rows by 24 columns, approximately 1

30
of the original resolution which is 640×480. We provide a detailed il-
lustration to explain the downsampling algorithm in the supplemen-
tal material. For each pixel, the sampling of 3D points on its ray is
performed in two phases. First, we uniformly sample 20 points along
the ray across the free space and the truncation region. We then
sample additional 20 points uniformly within the truncation region.
In the second phase, we sample 10 more points around the point
having the smallest TSDF value. Therefore, we sample 50 points per
ray in total. For the tracking of active submap, RO is performed for
10 iterations and GO for 10 epochs. The optimization of mapping
also runs for 10 epochs in each update. For RO, 2048 particles are
pre-sampled and evolved; other parameter settings follow [Zhang
et al. 2020]. The batch size is 19, 200 (384 pixels× 50 points) for GO
in tracking and 96, 000 (384 pixels × 50 points × 5 keyframes) for
mapping. All these numbers were found through experiments.

GPU implementation. The most time-consuming operation in a
neural SLAM/reconstruction is theMLP training and inference based
on all sample points in a batch. Furthermore, the fitness evaluation
and filtering of particles in RO is also costly. To accelerate the com-
putation, we make use of the Graph Execution mode of Tensorflow
and compile all the core computations above into computational
graphs. The computations are “traced” only once and can be called
repeatedly and run efficiently in the GPU.
The optimization of the active and inactive submaps runs in

separate processes in the GPU concurrently. Most of the time, the
two processes work independently and they communicate with
each other only when a new submap is created and the switching
of active submaps happens. When the inactive submap adjacent
to the active is being optimized, the two processes may update
their overlapping keyframes jointly. To avoid “dirty write” of the
overlapping keyframe residing in the shared memory, we set a write
lock to ensure that it is optimized alternately by the active and
inactive processes.

5 RESULTS AND EVALUATIONS

We provide both quantitative and qualitative results in this section.
Live demos can be found in the accompanying video.
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5.1 Datasets and Metrics

Datasets. We evaluated our method on three diverse public dis-
tastes, including Replica [Straub et al. 2019], ScanNet [Dai et al.
2017a], and FastCaMo [Zhang et al. 2021]. Replica is a synthetic
dataset containing rendered (with noise added) RGB-D sequences.
ScanNet is a real dataset of captured RGB-D sequences. FastCaMo
is a challenging dataset of sequences with fast camera motions. The
dataset is composed of a synthetic part (FastCaMo-Synth) and a
real captured (FastCaMo-Real) part. FastCaMo-Synth is built with
10 Replica scenes. The RGB-D sequences have the linear speed
of camera motion varying in [1, 4] m/s and the angular speed in
[0.9, 2.2] rad/s, with synthesized motion blur effect for RGB images
and depth noise for depth maps. FastCaMo-Real contains 24 real
RGB-D sequences captured for 12 scenes with fast camera motions
(linear speed up to 5.47m/s). For each sequence, a full and dense
reconstruction scanned with a laser scanner is provided as ground
truth for evaluating reconstruction accuracy and completeness.

To better evaluate the scalability of RGB-D reconstruction meth-
ods, we contribute a new real-world dataset of RGB-D sequences
capturing six large-scale indoor scenes (with area up to 200m2),
named FastCaMo-Large. The sequences were captured using an
Azure Kinect DK under fast camera motions, and the individual size
of each scene can be found in the supplemental material.

Evaluation metrics. When the ground-truth trajectory is avail-
able, we measure the camera tracking quality based on the Absolute
Trajectory Error (ATE) [Sturm et al. 2012]. To estimate ATE, the
trajectory to be evaluated is first rigidly aligned to the ground truth.
ATE is then estimated as the mean of pose differences of all frames.
We also measure the per-frame pose accuracy based on Translation
Error (TE). In addition, we use Relative Pose Error (RPE) to evalu-
ate the relative pose differences over a fixed time interval between
the estimated and the ground-truth trajectories. RPE is suited for
evaluating local trajectory accuracy. TE and RPE do not require a
pre-alignment of the estimated and ground-truth trajectories. As
long as the trajectories start from the same initial pose of the very
first frame, they can always be estimated for the following frames
in the reference system of the first frame. For a fair comparison,
we conducted multiple runs of our method and other open-sourced
neural-based methods using different random seeds. Specifically, we
executed each method five times and recorded the average result as
the final outcome. This approach helps mitigate the impact of ran-
dom variations and provides a more reliable and robust evaluation
of performance.
To evaluate the reconstruction quality, we measure the recon-

struction completeness and accuracy based on ground-truth surface
reconstruction. Following [Zhang et al. 2021], we measure complete-
ness as the percentage of the inlier portion of the ground-truth sur-
face and accuracy by RMS error of all reconstructed points against
the ground-truth surface.

5.2 Ablation Studies

We conduct a series of ablation studies to verify the necessity of the
various key design choices of our method:

Table 1. Ablation study of seven design choices on tracking accuracy (ATE
in cm) over 6 sequences of ScanNet (top rows) and 4 of FastCaMo (bottom
rows). The best results for each sequence are highlighted in blue color. ‘–’
indicates that the tracking failed for the corresponding method.

Method No C No RO No GO No U No SI No SR No LC Full
Scene0000 11.5 12.8 19.9 12.1 – 17.5 27.5 7.9
Scene0106 10.8 13.9 15.3 11.3 17.3 20.9 35.5 9.7
scene0169 12.3 15.1 36.5 13.5 – – – 9.7
scene0181 14.9 17.5 29.6 14.7 – 18.4 15.1 14.2
scene0207 10.2 8.9 19.5 8.2 20.8 19.5 – 7.8
scene0011 9.1 14.2 18.6 7.9 – 10.1 15.4 7.5
Apartment_1 10.5 27.6 10.2 11.0 – – 13.9 7.0
Hotel_0 7.3 14.3 6.2 6.9 – 9.5 10.3 4.8
Office_0 6.9 19.1 7.6 6.8 – 6.8 6.6 3.6
Room_0 8.1 40.6 8.9 7.2 – 20.1 28.0 4.8

• No Classification (No C): TSDF prediction is implemented
with regression as in existing methods.
• No RO: The tracking optimization is performed by GO only
as in existing methods.
• No GO: There is no GO-based pose refinement after RO.
• No Uncertainty (No U): The fitness evaluation (Eq. (13)) in
RO is not weighted by uncertainty.
• No Submap Initialization (No SI): No initialization is per-
formed for newly allocated submaps.
• No Smooth Revisit (No SR): No handling of pose jump for
smooth transition is done at submap revisiting.
• No Loop Closure (No LC): No loop closure optimization of
submaps is conducted.

The evaluation is conducted on 6 sequences from ScanNet and
4 from FastCaMo-Synth. Table 1 compares the tracking accuracy
(ATE) of our method and the various baselines. It can be seen that
“No SI” and “No SR” cause the most accuracy drop (and even failures)
among all baselines, suggesting their importance to stable tracking.
This also suggests that the handling of smooth transition between
two submaps especially when revisiting an inactive submap is criti-
cal to the overall tracking quality. The combination of RO and GO
produces better accuracy than either one of them. In particular,
RO’s effect is more prominent for fast-camera-motion sequences.
For sequences with ordinary camera motions, GO’s contribution
seems more significant. Classification is also influential in tracking
accuracy as implied by the results of “No C”. Although relatively
less significant, “No U” does affect the final tracking accuracy, hint-
ing that the uncertainty estimated by the classification network
output is indeed meaningful. The effect of “No LC” manifests the
necessity of our submap-level loop closure for fast-camera-motion
sequences. Note, however, that the local BAs of inactive submaps
are also turned off in “No LC”. This is because the local BAs rely on
globally consistent frame poses provided by the global optimization
of loop closure.
In Figure 10, we show plots of tracking accuracy over iteration

steps for RO only, GO only and our RO+GO. The tracking accuracy is
measured by per-frame translation error averaged over all frames of
scene0207 of ScanNet. The full ranges of TE variation are depicted
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RO GO RO GO
(a) RO only. (b) GO only. (c) RO+GO.

Fig. 10. Plots of per-frame tracking accuracy (TE) over iteration steps for
(a) RO only, (b) GO only, and (c) RO and then GO (our method). Each plot
shows TE averaged over all frames of a sequence (black curve) and ranges
of variation (colored bars). In (c), the dashed red line indicates the switching
point from RO to GO. The horizontal solid line across the three plots is
drawn for a clear comparison of the converging error by the three methods.
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(a) w/o jump handling (b) w/ jump handling

Fig. 11. Plots of Relative Pose Error (RPE) over time with and without jump
handling at submap revisiting. The red dashed line indicates the time at
which an inactive submap is revisited and a spike is observed when no jump
handling is conducted.

by bars and the ranges of medium half by boxes. Although RO finds
a good solution efficiently and converges faster than GO, GO can be
used to refine the solution found by RO, leading to a better solution.
Indeed, RO excels at finding a good initial solution by getting rid of
local minima due to its randomized nature. GO is good at finding a
better optimum in the vicinity of an initial guess. Combining the
two makes our method enjoy the advantages of both worlds.

To demonstrate the effect of pose jump handling when revisiting
an inactive submap, Figure 11 plots of the tracking accuracy (RPE)
over time with and without jump handling. When no jump handling
is conducted, a spike of the RPE curve is observed, which also affect
adversely the pose tracking of the following frames (see the higher
RPEs of the following time stamps).

5.3 Quantitative Comparisons

We quantitatively evaluate our method against several state-of-the-
art methods for both ordinary and fast-motion sequences.

Comparison on Replica. Table 2 compares ATE RMSE on 8 se-
quences of Replica between our method and three state-of-the-art
neural online RGB-D reconstruction methods (iMAP [Sucar et al.
2021], NICE-SLAM [Zhu et al. 2022] and Vox-Fusion [Yang et al.

Table 2. Comparing tracking accuracy (ATE RMSE in cm) on 8 RGB-D se-
quences of Replica. The best and the second best results for each sequence
are highlighted in blue and green colors, respectively.

Sequence iMAP NICE-SLAM Vox-Fusion MIPS-Fusion
Room-0 70.1 1.7 0.3 1.1
Room-1 4.5 2.0 1.3 1.2
Room-2 2.2 1.6 0.5 1.1
Office-0 2.3 1.0 0.7 0.7
Office-1 1.7 0.9 1.1 0.8
Office-2 4.9 1.4 0.5 1.3
Office-3 58.4 4.0 0.3 2.2
Office-4 2.6 3.1 0.6 1.1

Table 3. Comparing tracking accuracy (ATE RMSE in cm) on 8 RGB-D se-
quences of ScanNet. The best and the second best results for each sequence
are highlighted in blue and green colors, respectively. ’–’ indicates that the
tracking failed for the corresponding method.

Sequence iMAP NICE-SLAM Vox-Fusion MIPS-Fusion
scene0000 −− 12.1 17.6 7.9
scene0106 17.5 9.2 8.8 9.7
scene0169 −− 11.2 20.0 9.7
scene0181 32.1 13.9 19.0 14.2
scene0207 11.9 6.2 7.5 7.8
scene0011 18.4 8.2 7.4 7.5
scene0024 −− −− 31.0 7.8
scene0059 −− 12.8 35.5 10.7

2022]). On these relatively easy sequences, our method achieves
comparable accuracy to Vox-Fusion with much less running time
and memory footprint (see Section 5.5). We also evaluate the recon-
struction quality of our method in comparison to VoxFusion and
NICE-SLAM. The results demonstrate that ourmethod achieves com-
parable reconstruction quality to VoxFusion, while outperforming
NICE-SLAM. The results can be found in the supplemental material.

Comparison on ScanNet. Table 3 reports the comparison on 8
sequences of ScanNet (index ”0” for each scene). These sequences
include not only those tested by the alternatives [Yang et al. 2022;
Zhu et al. 2022] in their papers but also new ones which we be-
lieve are more challenging. Our method achieves comparable accu-
racy to the best-performing method. Sequences such as scene0000,
scene0181, scene0011 and scene0059 contain complex camera tra-
jectories (with multiple loops), on which our method demonstrates
good results due to the back-end optimization. The scene0024 se-
quence is the most challenging one which contains large open areas
and lacks geometric details. Our method works the best on this
sequence due to the robust tracking method employed.

Comparison on FastCaMo-Synth. Table 4 reports a comparison
on 10 sequences of FastCaMo-Synth. All these sequences were
recorded with fast camera motions. Among the methods, ours is
the only one that can reconstruct all the sequences with decent
accuracy. Office_3 is the most challenging one due to the large
camera rotations involved, on which our method achieves an ATE
of 17.4cm. Our method is the first, to our knowledge, that realizes

ACM Trans. Graph., Vol. 40, No. 4, Article 56. Publication date: August 2023.



56:12 • Yijie Tang∗ , Jiazhao Zhang∗ , Zhinan Yu, He Wang, and Kai Xu†

Table 4. Comparing tracking accuracy (ATE RMSE in cm) on 10 fast-camera-
motion RGB-D sequences of FastCaMo-Synth (noise-free). The best and
the second best results for each sequence are highlighted in blue and green
colors, respectively. ‘–’ indicates that the tracking was failed for the corre-
sponding method.

Sequence iMAP NICE-SLAM Vox-Fusion MIPS-Fusion
Apartment_1 – – 9.1 7.0
Apartment_2 – – 4.1 1.5
Frl_apartment_2 – – 7.2 1.9
Hotel_0 20.3 4.2 5.0 4.8
Office_0 39.2 8.4 4.8 3.6
Office_1 – 13.7 4.6 5.6
Office_2 – – 10.2 7.4
Office_3 – 14.3 – 17.4
Room_0 – – 8.2 4.4
Room_0 – 29.7 5.8 5.1

Table 5. Comparing reconstruction quality (completeness and accuracy) on
10 fast-camera-motion RGB-D sequences of FastCaMo-Synth (noise-free).
The best results for each sequence are highlighted in blue. ‘–’ indicates that
the tracking failed for the corresponding method.

NICE-SLAM Vox-Fusion Ours
Compl.(↑) Acc.(↓) Compl.(↑) Acc.(↓) Compl.(↑) Acc.(↓)

Apartment_1 - - 63.4 4.8 73.9 4.2
Apartment_2 - - 93.1 2.4 64.8 4.9
Frl_aparment_2 - - 62.3 5.1 78.0 4.3
Hotel_0 84.4 3.9 66.0 4.6 88.8 3.4
Office_0 92.9 2.9 44.8 6.5 94.2 2.9
Office_1 53.8 5.7 72.3 5.9 67.9 4.3
Office_2 - - 51.6 6.3 62.7 4.8
Office_3 63.4 4.9 - - 44.4 6.4
Room_0 - - 37.6 7.0 65.6 4.8
Room_1 65.3 4.8 37.7 7.0 83.4 3.4

online neural RGB-D reconstruction under fast camera motions. Be-
sides tracking accuracy, Table 5 compares the reconstruction quality.
Our method exhibits the best completion and accuracy for most of
the sequences. We also compare our method with two traditional
RGB-D reconstruction methods, i.e., BunldeFusion [Dai et al. 2017b]
and ElasticFusion [Whelan et al. 2015]. The results are reported in
Table 6. Generally speaking, the performance of the current neural
SLAM approaches is still not comparable to traditional ones. On
the fast-camera-motion sequences, however, our method performs
better than the two traditional methods, thanks to the integration of
gradient-based and randomized optimizations in the neural setting
and the efficient learning of submaps.

Comparison on TUM RGB-D. Table 7 reports a comparison of track-
ing accuracy on three TUM RGB-D sequences with slow camera
motions and small scene scales. Traditional methods (rows 5-8) are
generally more accurate than neural-based ones (rows 1-4) with
dedicated designs such as feature tracking and depth noise modeling.
Our method achieves comparable performance to NICE-SLAM. The
advantage of our method is more prominent for fast-motion and
large-scale sequences.

Table 6. Comparing tracking accuracy (ATE RMSE in cm) on 10 fast-camera-
motion RGB-D sequences of FastCaMo-Synth (with noise). The best results
for each sequence are highlighted in blue color. ‘–’ indicates that the tracking
was failed for the corresponding method.

Sequence ElasticFusion BundleFusion MIPS-Fusion
Apartment_1 40.9 4.6 6.6
Apartment_2 40.7 2.2 3.1
Frl_apartment_2 43.8 83.6 2.6
Hotel_0 22.3 2.7 5.2
Office_0 2.3 17.3 7.6
Office_1 - - 17.4
Office_2 - - 24.9
Office_3 43.8 - 6.0
Room_0 - 8.2 4.4
Room_0 31.0 5.8 3.6

Table 7. Comparing tracking accuracy (ATE in cm) on three RGB-D se-
quences of TUM RGB-D. The best results for each sequence are highlighted
in blue.

Method fr1/desk fr2/xyz fr3/office
iMap 4.9cm 2.0cm 5.8cm
DI-Fusion 4.4cm 2.4cm 15.6cm
NICE-SLAM 2.7cm 1.8cm 3.0cm
MIPSFusion 3.0cm 1.4cm 4.6cm
BAD-SLAM 2.3cm 2.2cm 2.3cm
Kintinuous 2.0cm 1.1cm 1.7cm
ORB-SLAM2 1.6cm 0.4cm 1.0cm
[Cao et al. 2018] 1.5cm 0.6cm 0.9cm
HRBF-Fusion 1.4cm 0.5cm 0.7cm

5.4 Qualitative Results

Visual comparison of neural rendering. We provide the results of
the neural rendering in Figure 12 on sequences from FastCaMo-Large,
ScanNet, and FastCaMo-Synth. Our method achieves higher ren-
dering quality under challenging lighting conditions in real-world
environments (rows 1-2). For the fast-motion sequences (row 4),
NICE-SLAM finds difficulty in learning geometry and appearance
within a short time interval, leading to suboptimal results. In con-
trast, our method consistently produces high-quality rendering
outputs throughout the sequences (row 4). On the quantitative
side, our method outperforms NICE-SLAM by 51.3% in PSNR on
FastCaMo-Large. Please refer to the supplemental material.

Visual comparison of reconstruction. We compare the reconstruc-
tion quality of our method with several mainstream methods in-
cluding both neural-based [Yang et al. 2022; Zhu et al. 2022] and
traditional-based ones [Dai et al. 2017b;Whelan et al. 2015]. The eval-
uation was performed on the FastCaMo-Real and FastCaMo-Synth
datasets and the results are shown in Figure 13. Note that ourmethod
achieves better reconstruction quality with fewer artifacts and more
complete geometry. This is also reflected by the better trajectory
conformance of our method against the ground truths.

In Figure 16, we show a gallery of reconstruction results on several
large-scale indoor scenes of the FastCaMo-Large dataset. Here, we
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Input color Input depthPred. color (Ours) Pred. depthPred. color (Nice-SLAM) Pred. depth (Nice-SLAM)

Fail

Fig. 12. Rendering results of ours and NICE-SLAM on the sequences of
FastCaMo-Large (rows 1-2), ScanNet (row 3), and FastCaMo-Synth (row 4).

NICE-SLAMVoxFusion MIPSFusion (Ours)
FastCaMo-Real-Lab

Ground Truth

FastCaMo-Synth-Office

FastCaMo-Synth-Room

FastCaMo-Synth-Room-I

Fig. 13. Comparision of 3D reconstruction on four room-scale indoor scene
sequences of FastCaMo-Real and FastCaMo-Synth.

observe that our method exhibits significant advantages in terms of
both completion and quality, especially in scenarios with large loops
(columns 1 and 4). Our method attains higher quality thanks to 1)
the RO-based pose optimization leading to robustness and 2) the
classification-based design making the network lightweight and fast
to learn. In most sequences, our method preserves geometric details
better (see the zoom-in views). We attribute this to our distributed

FastCaMo-Real– Apartment_II

ScanNet– Scene0169

Fig. 14. Visualization of loop closure on two sequences. Camera trajectories
are visualized with solid curves and ground-truth reference with dashed
curves. The tracking error is color-coded. Submaps are shown as grey boxes.
The closing-loop submaps are shaded in red.
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Fig. 15. Comparing the average and maximum running memory cost of
NICE-SLAM, Vox-Fusion and our method for increasing scene scales. Our
method consumes the least running memory and the cost increases slowly
with scene scale. The grey dots mean that the two alternative methods
failed on those sequences.

neural representation where each submap takes charge of only a
local region and hence more scene details can be memorized.

Visualization of loop closure. In Figure 14, we present a visual-
ization of loop closure with two examples. For the Apartment_II
sequence of FastCaMo-Real (top row), the trajectory starts to drift
in the middle image. The trajectory is then corrected when a loop
is formed and closed by the final submap shown in the right image.
The same goes for the sequence shown in the bottom row. After loop
closure, the overall tracking error is minimized. Since each submap
has been well optimized with local BAs in both active and inactive
processes, our method only needs to perform submap-level registra-
tions to close a loop. Thanks to the mechanism of the local-frame
definition of a neural submap and pair-wise alignment of adjacent
submaps, we can achieve submap-level loop closure straightfor-
wardly and efficiently. This flexibility is a clear advantage over the
single-implicit-map [Sucar et al. 2021] and the feature-grid-based
approaches [Yang et al. 2022; Zhu et al. 2022] based on which it is
hard to realize global map update caused by loop closure. Examples
for with and without non-trivial loops can be found in the supple-
mental material. We observe that our method consistently exhibits
robustness across various types of loops.
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Table 8. Running time of various algorithmic components of our method
profiled on a per-iteration basis.

Sequence Time
Tracking (RO) 4 ms
Tracking (GO) 8 ms
Mapping (1 frame) 9 ms
Mapping (5 frames) 48 ms
Create new submap 4 ms

5.5 Runtime and Memory Analysis

Table 8 reports the average runtime for one iteration of the various
algorithmic components of our method tested on the scene0000
sequence of ScanNet. The time was measured on a workstation with
an Intel® CoreTM i9-1290K CPU@ 3.9GHz× 16 with 32GB RAM and
an Nvidia GeForce RTX 3090Ti GPU with 24GB memory. In terms
of total runtime for full reconstruction of the tested sequences, our
method is 4× faster than NICE-SLAM and 3× faster than Vox-Fusion.
In Figure 15, we compare the average and maximum running

memory cost of NICE-SLAM, Vox-Fusion, and our method for in-
creasing scene scales. Our method leads to the smallest memory
footprint and the cost for the three scenes. In fact, the main storage
cost of our method is the sample batches for the optimization of the
active submap and one of the inactive submaps being refined. Such
memory cost does not increase drastically with growing scene scales.
Our method does not require extra memory for storing feature grids
as in the alternative methods.

6 DISCUSSION AND CONCLUSIONS

With our work, we wish to bring it to the community’s attention
the potential of grid-free, purely neural representation for scalable
and robust online RGB-D reconstruction. Our main design philoso-
phy is two-fold. First, we adopt a flexible divide-and-conquer map-
ping scheme. Each submap, representing a subscene compactly, can
be learned efficiently and refined distributively. The high-quality
submaps together constitute a decent full reconstruction of the
whole scene with submap-level global pose optimization. We be-
lieve that this mapping scheme has accomplished a good trade-off
between flexibility and scalability. Second, we propose a hybrid
tracking scheme in which randomized optimization is made possi-
ble based on two new designs on tracking loss. This enables efficient
and robust tracking even under fast camera motions.

Limitations. Our method has several limitations. Firstly, our track-
ing and mapping depends heavily on depth. When the depth input is
of low quality, the reconstruction quality is unsatisfactory. Secondly,
our loop detection is still simplistic. A loop may happen when the
camera looks at a previously visited point without actually entering
any inactive submap, which will be missed by our detection. Thirdly,
when aligning two submaps having significant misalignment, robust
feature detection and matching is still needed. Finally, our method
does not handle view-dependent appearance such as specular since
it does not model view directions in the neural radiance field as
most existing works [Sucar et al. 2021; Zhu et al. 2022].

Future works. We expect that our work will inspire a rich set of
future directions:

• How to achieve a smarter submap allocation to ensure a bet-
ter match between learning capacity and scene complexity?
This may need a method for probing the representation for-
getting [Davari et al. 2022] of a neural submap against the
acquired data.
• How to realize end-to-end trainable loop detection and clo-
sure in one framework based on our MIPS representation?
For example, it might be interesting to investigate an efficient
neural remapping of submaps during loop closure based on a
fast 𝑆𝐸 (3)-transformation of neural implicit maps [Yuan and
Nüchter 2022].
• How to integrate the geometric and the photometric losses
in a more principled way? Specifically, how to bridge and
switch smoothly between the two is worth of investigating.
• How to fuse multi-modal input, e.g., inertial measurement,
into online neural reconstruction using a similar technique
to [Zhang et al. 2022]?
• It seems a natural application to use neural submap repre-
sentation for distributive and collaborative reconstruction of
large scenes with a collection of robots [Dong et al. 2019].
• Another promising and interesting direction is to enhance
neural submap representation for semantic scene reconstruc-
tion [Vora et al. 2021; Zhang et al. 2020].
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from the FastCaMo-Large datasets. Our method achieves better accuracy and completeness compared to the alternatives.
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